СТАН ПИТАННЯ ЩОДО МОЖЛИВОСТІ ПІДВИЩЕННЯ ХАРАКТЕРИСТИК ВИСОКОТЕМПЕРАТУРНИХ КОМПОЗИТІВ
DOI:
https://doi.org/10.15588/1607-6885-2024-4-3Ключові слова:
високотемпературні композити, матриця, волокна, технологія формування, подовжувачі сопла.Анотація
Мета роботи. Складання науково-технічного огляду про стан, досягнення та перспективи розвитку у галузі створення композитів для застосування у авіокосмічній промисловості та розробки технологій їх виробництва. Узагальнення, і критичний аналіз відомих результатів досліджень з питань розробки та використання композитів у аерокосмічній промисловості. Виявлення областей, в яких актуально проведення подальших досліджень. Вказати авторитетні джерела щодо результатів досліджень в області застосування композитів.
Методи дослідження. Було проведено пошук відомостей щодо вуглець-вуглецевих, керамічних та металоматричних КМ, що були опубліковані за останні 15 років. Статті були знайдені за допомогою пошуку в Інтернеті в базах даних, зокрема, Scopus, Web of Science та Google Scholar. Для збору, організації та цитування дослідних матеріалів була використана програма Zotero.
Отримані результати. Систематизовано та проаналізовано стан, досягнення та перспективи розвитку у галузі створення високотемпературних композитів та розробки технологій їх виробництва. Розглянуто перспективні, на сьогодні, можливості підвищення робочих температур композитів високотемпературного призначення. Обґрунтовано вибір основних напрямків сучасних досліджень щодо застосування композитів в аерокосмічній галузі.
Наукова новизна. Розширені відомості щодо перспектив створення високотемпературних композитів з підвищеною робочою температурою та розробки технологій, які дозволять підвищити їх робочу температуру і знизити технологічні витрати енергії при виробництві з них деталей теплових двигунів.
Практична цінність. Відомості, наведені в даному науково-технічному огляді можуть бути використані як для розробки нових високотемпературних композитів, так і для вдосконалення складів та технологій виробництва відомих систем композитів, обгрунтованого вибору їх фазових складових, а також аспірантами при виборі теми дисертаційної роботи; допомогти сформулювати цілі дисертаційного дослідження, вибрати сучасні методи проведення досліджень.
Посилання
Potapov, A., Shtefan, Y., & Lichman, E. (2009). Research of material for uncooled nozzle extensions of liquid rocket engines. Acta Astronautica, 64(1), 22–27.
Gradl, P. R., & Valentine, P. (2017). Carbon-carbon nozzle extension development in support of in-space and upper-stage liquid rocket engines. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference (p. 5064).
Potapov, A. M. (2015). Kompoziti: perspektivi ispolzovaniya v raketno-kosmicheskoi tekhnike. Kosmicheskaya nauka i tekhnologiya, 21(5), 69.
Anikin, A. V., Berdov, R. D., Volkov, N. N., Volkova, L. I., Gurina, I. N., & Tsatsuev, S. M. (2019). Long-run testing of model nozzle extensions made of a carbon-carbon composite material in a liquid-propellant rocket engine operating on hydrogen and oxygen. Journal of Applied Mechanics and Technical Physics, 60, 80–86.
Yu, S., Park, K., Lee, J. W., Hong, S. M., Park, C., Han, T. H., & Koo, C. M. (2017). Enhanced thermal conductivity of epoxy/Cu-plated carbon fiber fabric composites. Macromolecular Research, 25(6), 559–564.
Zhuang, Q., Zhang, P., Li, M., Yan, H., Yu, Z., & Lu, Q. (2017). Microstructure, wear resistance and oxidation behavior of Ni-Ti-Si coatings fabricated on Ti6Al4V by laser cladding. Materials, 10(11), 1248.
Zamani, P., & Valefi, Z. (2017). Microstructure, phase composition and mechanical properties of plasma sprayed Al2O3, Cr2O3 and Cr2O3-Al2O3 composite coatings. Surface and Coatings Technology, 316, 138–145.
Du, B., Hong, C., Qu, Q., Zhou, S., Liu, C., & Zhang, X. (2017). Oxidative protection of a carbon-bonded carbon fiber composite with double-layer coating of MoSi2-SiC whisker and TaSi2-MoSi2-SiC whisker by slurry method. Ceramics International, 43(12), 9531–9537.
Ma XiaoJun, M. X., Zhou WanRu, Z. W., & Chen Yin, C. Y. (2017). Structure and photocatalytic properties of Mn-doped TiO2 loaded on wood-based activated carbon fiber composites.
Farrokhzad, M. A. (2017). High temperature oxidation behaviour of autocatalytic Ni-P-BN (h) coatings. Surface and Coatings Technology, 309, 390–400.
Jia, Y., Li, H., Feng, L., Sun, J., Li, K., & Fu, Q. (2016). Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch. Corrosion Science, 104, 61–70.
Huo, C., Guo, L., Feng, L., Wang, C., Li, Z., Zhang, Y., & Kou, G. (2017). Improving the oxidation resistance under thermal shock condition of SiC-coated C/C composites with refined SiC grain size using ferrocene. Surface and Coatings Technology, 316, 39–47.
Doganli, G., Yuzer, B., Aydin, I., Gultekin, T., Con, A. H., Selcuk, H., & Palamutcu, S. (2016). Functionalization of cotton fabric with nanosized TiO 2 coating for self-cleaning and antibacterial property enhancement. Journal of Coatings Technology and Research, 13, 257–265.
Yong, X., Cao, L., Huang, J., Kong, W., Su, J., Li, C., ... & Liu, J. (2017). Microstructure and oxidation protection of a MoSi2/SiO2-B2O3-Al2O3 coating for SiC-coated carbon/carbon composites. Surface and Coatings Technology, 311, 63–69.
Zhang, Y. P., Shen, Y. H., Chen, W. W., Cheng, H. W., & Wang, L. (2017, July). Preparation of continuous Al2O3/Y2O3 coating on carbon fiber by a novel aqueous plasma electrolysis. In Materials Science Forum, 898, 1575–1582. Trans Tech Publications Ltd.
Li, L. (2015). Damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite under cyclic fatigue loading at room temperature and 800 C in air. Materials, 8(12), 8539–8560.
Huang, X., Sun, S., Tu, G., Lu, S., Li, K., & Zhu, X. (2017). The Microstructure of Nanocrystalline TiB2 Films Prepared by Chemical Vapor Deposition. Materials, 10(12), 1425.
Szczurek, A., Barcikowski, M., Leluk, K., Babiarczuk, B., Kaleta, J., & Krzak, J. (2017). Improvement of interaction in a composite structure by using a sol-gel functional coating on carbon fibers. Materials, 10(9), 990.
Tatarko, P., Casalegno, V., Hu, C., Salvo, M., Ferraris, M., & Reece, M. J. (2016). Joining of CVD-SiC coated and uncoated fibre reinforced ceramic matrix composites with pre-sintered Ti3SiC2 MAX phase using Spark Plasma Sintering. Journal of the European Ceramic Society, 36(16), 3957–3967.
Januś, M., Kyzioł, K., Kluska, S., Konefał-Góral, J., Małek, A., & Jonas, S. (2015). Plasma assisted chemical vapour deposition-technological design of functional coatings. Archives of Metallurgy and Materials, 60.
Jonas, S., Januś, M., Jaglarz, J., & Kyzioł, K. (2016). Formation of SixNy (H) and C: N: H layers by plasma-assisted chemical vapor deposition method. Thin Solid Films, 600, 162–168.
Lee, E. S., Lee, C. H., Chun, Y. S., Han, C. J., & Lim, D. S. (2017). Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites. Composites Part B: Engineering, 116, 451–458.
Guo, Z., Sang, L., Wang, Z., Chen, Q., Yang, L., & Liu, Z. (2016). Deposition of copper thin films by plasma enhanced pulsed chemical vapor deposition for metallization of carbon fiber reinforced plastics. Surface and Coatings Technology, 307, 1059–1064.
Wang, J., Lin, W., Yan, X., Wu, X., Wu, F., & Yang, Y. (2016). Preparation and microstructure of Al2O3–SiO2–TiO2 coating on three-dimensional braided carbon fiber by sol–gel technology. Materials & Design, 89, 928–932.
Figueira, R. B., Callone, E., Silva, C. J., Pereira, E. V., & Dirè, S. (2017). Hybrid coatings enriched with tetraethoxysilane for corrosion mitigation of hot-dip galvanized steel in chloride contaminated simulated concrete pore solutions. Materials, 10(3), 306.
Xiang, Y., Li, X., Du, A., Wu, S., Shen, J., & Zhou, B. (2017). Timing of polyethylene glycol addition for the control of SiO2 sol structure and sol-gel coating properties. Journal of Coatings Technology and Research, 14, 447–454.
Xia, K., Lu, C., & Yang, Y. (2013). Preparation of anti-oxidative SiC/SiO2 coating on carbon fibers from vinyltriethoxysilane by sol–gel method. Applied Surface Science, 265, 603–609.
Wang, J., Lin, W., Yan, X., Wu, X., Wu, F., & Yang, Y. (2016). Preparation and microstructure of Al2O3–SiO2–TiO2 coating on three-dimensional braided carbon fiber by sol–gel technology. Materials & Design, 89, 928–932.
Figueira, R. B., Callone, E., Silva, C. J., Pereira, E. V., & Dirè, S. (2017). Hybrid coatings enriched with tetraethoxysilane for corrosion mitigation of hot-dip galvanized steel in chloride contaminated simulated concrete pore solutions. Materials, 10(3), 306.
Xiang, Y., Li, X., Du, A., Wu, S., Shen, J., & Zhou, B. (2017). Timing of polyethylene glycol addition for the control of SiO2 sol structure and sol–gel coating properties. Journal of Coatings Technology and Research, 14, 447–454.
Yang, G., Huang, Z., Wang, X., & Wang, B. (2018). Fabrication and anti-oxidation ability of SiC-SiO2 coated carbon fibers using sol-gel method. Materials, 11(3), 350.
Improvement of carbon fiber oxidation resistance by thin ceramic coating using silica particles. / Kira, Kohei, et al. Carbon, 2024, Vol. No. 228. P. 119417.
Li, Y., Guo, L., Li, H., Ma, H., & Song, Q. (2017). Effects of carbon nanotubes by electrophoretic deposition on interlaminar properties of two dimensional carbon/carbon composites. Journal of Wuhan University of Technology-Mater. Sci. Ed., 32(5), 994–1000.
Volkmann, E., Tushtev, K., Koch, D., Wilhelmi, C., Göring, J., & Rezwan, K. (2015). Assessment of three oxide/oxide ceramic matrix composites: mechanical performance and effects of heat treatments. Composites Part A: Applied Science and Manufacturing, 68, 19–28.
Pritzkow, W., Nöth, A., & Rüdinger, A. (2015). Oxide ceramic matrix composites-manufacturing, machining, properties and industrial applications.
Zoli, L., Vinci, A., Galizia, P., Melandri, C., & Sciti, D. (2018). On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments. Scientific Reports, 8(1), 1–9.
Mungiguerra, S., Di Martino, G. D., Savino, R., Zoli, L., Sciti, D., & Lagos, M. A. (2018). Ultra-high-temperature ceramic matrix composites in hybrid rocket propulsion environment. In 2018 international energy conversion engineering conference, 4694.
Bogomol, Yu. I. (2019). Fiziko-himichni osnovi keruvannya strukturoyu ta vlastivostyami armovanih keramichnih materialiv dlya roboti v ekstremalnih umovah ekspluataciyi.
Wang, Z., Yang, X., Zhao, J., Zhu, Z., Wang, Y., & Zhang, J. (2019). Microstructure and properties of directionally solidified LaB6 (100)-ZrB2 eutectic composite prepared by the optical zone melting method. Journal of the European Ceramic Society, 39(5), 1803–1809.
Yang, X., Wang, P., Wang, Z., Hu, K., Cheng, H., Li, Z., & Zhang, J. (2017). Microstructure, mechanical and thermionic emission properties of a directionally solidified LaB6-VB2 eutectic composite. Materials & Design, 133, 299-306.
Berger, M. H., Back, T. C., Soukiassian, P., Martinotti, D., Douillard, L., Fairchild, S. B., ... & Sayir, A. (2017). Local investigation of the emissive properties of LaB 6–ZrB 2 eutectics. Journal of materials science, 52, 5537–5543.
Demirskyi, D., & Sakka, Y. (2014). In situ fabrication of B 4 C-NbB 2 eutectic composites by spark–plasma sintering. Journal of the American Ceramic Society, 97(8), 2376-2378.
Demirskyi, D., Sakka, Y., & Vasylkiv, O. (2016). High‐strength B4C–TaB2 eutectic composites obtained via in situ by spark plasma sintering. Journal of the American Ceramic Society, 99(7), 2436–2441.
Demirskyi, D., & Vasylkiv, O. (2017). Analysis of the high-temperature flexural strength behavior of B4C-TaB2 eutectic composites produced by in situ spark plasma sintering. Materials Science and Engineering: A, 697, 71–78.
Demirskyi, D., Sakka, Y., & Vasylkiv, O. (2015). Consolidation of B4C–VB2 eutectic ceramics by spark plasma sintering. Journal of the Ceramic Society of Japan, 123(1443), 1051–1054.
Demirskyi, D., & Vasylkiv, O. (2016). Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering. Ceramics International, 42(16), 19372–19385.
Loboda, P. I. (2018). Structure and properties of reinforced ceramic materials produced by directional solidification. Powder Metallurgy and Metal Ceramics, 57, 13–26.
Chen, W. T., White, R. M., Goto, T., & Dickey, E. C. (2016). Directionally solidified boride and carbide eutectic ceramics. Journal of the American Ceramic Society, 99(6), 1837–1851.
LLorca, J., & Orera, V. M. (2006). Directionally solidified eutectic ceramic oxides. Progress in materials science, 51(6), 711–809.
Лобода П.І. Спрямовано закристалізовані бориди. К.: Праймдрук, 2012. 395 с.
Loboda, P. I., Bogomol, Yu. I., & Solovjova, T. O. (2013). Vpliv mehanichnih kolivan na formuvannya mikrostrukturi monokristaliv i keramichnih kompozitiv pid chas viroshuvannya z rozplavu. Naukovi visti Nacionalnogo tehnichnogo universitetu Ukrayini Kiyivskij politehnichnij institut, (6), 65–72.
Loboda, P. I., Bogomol, Yu. I., & Solovjova, T. O. (2012). Vpliv ultrazvuku na strukturu i vlastivosti spryamovano zakristalizovanih evtektichnih splaviv. Metaloznavstvo ta obrobka metaliv, (4), 23–28.
Remizov D. O., Bogomol, Yu. I., Loboda P. I. (2020). Influence of structural and geometric characteristics of phase components on the mechanical properties of the eutectic Ti-TiB composition crystallized from the melt, Problems of Friction and Wear, 2, 87, 68–77.
Bogomol, I., Badica, P., Shen, Y., Nishimura, T., Loboda, P., & Vasylkiv, O. (2013). Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping. Journal of alloys and compounds, 570, 94–99.
Oliete, P. B., Peña, J. I., Larrea, A., Orera, V. M., LLorca, J., Pastor, J. Y., ... & Segurado, J. (2007). Ultra‐high‐strength nanofibrillar Al2O3-YAG-YSZ eutectics. Advanced Materials, 19(17), 2313–2318.
Bogomol, Yu. I., Loboda, P. I., & Golovenko, Ya. B. (2015). Struktura ta vlastivosti kvazipotrijnih spryamovano armovanih kompozitiv sistemi V4S-TiB2-SiC. Metaloznavstvo ta obrobka metaliv, (2), 37.
Bogomol I. (2019). High-temperature mechanical behaviour of the directionally solidified ceramic eutectics. International Conference on the Cooperation and Integration of Industry, Education, Research, and Application. Nanchang, China. P. 38–39.
Kruger M., Hasemann G., Bogomol I., Loboda P. I. (2013). Multiphase Mo-Si-B Alloys Processed by Directional Solidification. Materials Research Society Symposium Proceeding, 1516, 1684–1689.
Hasemann, G., Bogomol, I., Schliephake, D., Loboda, P. I., & Krüger, M. (2014). Microstructure and creep properties of a near-eutectic directionally solidified multiphase Mo-Si-B alloy. Intermetallics, 48, 28–33.
Bogomol, Yu. I., Popovich, O. I., Kryuger, M., Loboda, P. I., Bogomol, Yu. I., Popovich, O. I., ... & Loboda, P. I. (2016). Struktura i vlastivosti spryamovano zakristalizovanogo splavu sistemi Mo-8, 7 Si-18 V.
Hasemann, G., Kaplunenko, D., Bogomol, I., & Krüger, M. (2016). Near-eutectic ternary Mo-Si-B alloys: microstructures and creep properties. JOM, 68, 2847–2853.
Upatov, M. I., Bogomol, Yu. I., Bolbut, V. V., & Loboda, P. I. (2018). Vpliv peremishuvannya rozplavu na strukturu ta vlastivosti spryamovano zakristalizovanogo splavu Mo-17, 5Si-8B. Metaloznavstvo ta obrobka metaliv, (1), 22–29.
Bogomol, I., Borodianska, H., Zhao, T., Nishimura, T., Sakka, Y., Loboda, P., & Vasylkiv, O. (2014). A dense and tough (B4C-TiB2)-B4C ‘composite within a composite’produced by spark plasma sintering. Scripta Materialia, 71, 17–20.
Gusarova I.O., Potapov O.M., Solodkii Є.V., Bogomol Yu.I. (2018). Oderzhannya kompozitu B4C-TіB2 z izotropnoyu yevtektichnoyu mikrostrukturoyu ta yogo vlastivostі. Poroshkova metalurgіya, 03/04, 108–116.
Sposіb otrimannya keramіchnikh polіkristalіchnikh materіalіv na osnovі karbіdu boru metodom yelektrorozryadnogo spіkannya: pat. 87076 Ukraїna, № u201307486; declared 12.06.2013; published 27.01.2014, Byul. № 2.
Sposіb otrimannya keramіchnogo bronematerіalu na osnovі karbіdu boru ta diboridu titanu: pat. 114502 Ukraїna, № u201609558; declared 16.09.2016; published 10.03.2017, Byul. № 5.
Antonenko O.O., Bogomol Yu.І. (2019). Doslіdzhennya vlastivostei і strukturi metalokeramіchnikh kompozitіv sistemi B4C-TiB2-Al / Zbіrka tez dopovіdei KhІІ Mіzhnarodnoї konferentsії studentіv, aspіrantіv ta molodikh vchenikh “Perspektivnі tekhnologії na osnovі novіtnіkh fіziko-materіaloznavchikh doslіdzhen ta komp’yuternogo konstruyuvannya materіalіv, 18–19 kvіtnya roku Kiїv, Ukraїna, 183–185.
Antonenko O.O., Bogomol Yu.І. (2019). Doslіdzhennya vlastivostei і strukturi metalokeramіchnikh kompozitіv sistemi B4C-TiB2-Cu / Materіali XI Mіzhnarodnoї naukovo-tekhnіchnoї konferentsії «Novі materіali і tekhnologії v mashinobuduvannі», KPІ іm. Іgorya Sіkorskogo, m. Kiїv, 30–31 travnya, 21.
Zahorodnia E.V., Loboda P.I., Bohomol Yu.I., Solodkyi Ye.V., Zyma R.A. (2011). Mikrostruktura ta mekhanichni vlastyvosti evtektychnoho splavu LaB6–TiB2 oderzhanoho elektrorozriadnym spikanniam. Metalofizyka i novitni tekhnolohii, 33. Spetsvypusk. 351–360.
Sposib otrymannia keramichnykh evtektychnykh polikrystalichnykh materialiv metodom elektrorozriadnoho spikannia: pat. 74036 Ukraina, № u201205104; declared 24.04.2012 ; published 10.10.2012, Biul. № 19.
Loboda, P. I., Bogomol, Yu. I., & Bilij, O. I. (2015). Struktura ta vlastivosti rozpilenih poroshkiv evtektichnogo splavu V4S-TiV2. Metaloznavstvo ta obrobka metaliv, (3), 46–52.
Loboda P.I., Soloviova T.O., Bogomol Yu.I., Remizov D.O., Bilyi O.I. (2015). Effect of the Crystallization Kinetic Parameters on the Structure and Properties of a Eutectic Alloy of the LaB6–TiB2 System. Journal of Superhard Materials, 37, 394–401.
Sposib otrymannia keramichnykh evtektychnykh poroshkiv na osnovi heksaborydu lantanu metodom vidtsentrovoho plazmovoho rozpylennia: pat. 99564 Ukraina, № u201414167; declared 30.12.2014; published.10.06.2015, Biul. № 11.
Sposib otrymannia keramichnykh evtektychnykh poroshkiv na osnovi karbidu boru metodom vidtsentrovoho plazmovoho rozpylennia: pat. 99563 Ukraina, № u201414166; declared 30.12.2014 ; published 10.06.2015, Biul. № 11.
Trosnikova, I. Y., Loboda, P. I., Karasevska, O. P., & Bilyi, O. I. (2014). Effect of the cooling rate during melt solidification on the structure and properties of WC–W 2 C. Powder Metallurgy and Metal Ceramics, 52, 674–679.
Vasylkiv, O., Borodianska, H., Badica, P., Grasso, S., Sakka, Y., Tok, A., ... & Ma, J. (2012). High hardness B a C b-(B x O y/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering. Journal of Nanoscience and Nanotechnology, 12(2), 959–965.
Badica, P., Borodianska, H., Xie, S., Zhao, T., Demirskyi, D., Li, P., ... & Vasylkiv, O. (2014). Toughness control of boron carbide obtained by spark plasma sintering in nitrogen atmosphere. Ceramics International, 40(2), 3053–3061.
Llorca J., Orera V.M. (2006). Directionally solidified eutectic ceramic oxides.Progress in Materials Science, 51, 711–809.
Kobylinskyi Yu.V., Bolbut V.V., Bohomol Yu.I., Loboda P.I. (2016). Vplyv termichnoi obrobky na mekhanichni vlastyvosti ta na vnutrishni napruzhennia v spriamovano zakrystalizovanomu evtektychnomu splavi B4C-TiB2. VIII Mizhnarodna naukovo-tekhnichna konferentsiia “Novi materialy i tekhnolohii v mashynobuduvanni”. 77–78.
Dub, S. N., Loboda, P. I., Bogomol, Y. I., Tolmacheva, G. N., & Tkach, V. N. (2013). Mechanical properties of HfB 2 whiskers. Journal of Superhard Materials, 35, 234–241.
Dub S.N., Sichkar S.M., Bilous V., Tolmachova G.N., Loboda P.I, Bogomol I., Kysla G.P. (2017). Mechanical properties of single crystals of transition metals diborides TMB2 (TM = Sc, Hf, Zr, Ti). Experiment and theory. Journal of Superhard Materials, 39, 308–318.
Soloviova. T., Karasevska O. P., Vleugels J., Loboda P. I. (2017). Influence of annealing on crucible-free float zone melted LaB6 -TiB2 composites. Journal of Alloys and Compounds, 729, 749–757.
Karadimas, G., & Salonitis, K. (2023). Ceramic matrix composites for aero engine applications–a review. Applied Sciences, 13(5), 3017.
Wang, L., Liu, S., Gou, J., Zhang, Q., Zhou, F., Wang, Y., & Chu, R. (2019). Study on the wear resistance of graphene modified nanostructured Al2O3/TiO2 coatings. Applied Surface Science, 492, 272–279.
Aviation, G. E. (2015). GE Successfully Tests World's First Rotating Ceramic Matrix Composite Material for Next-Gen Combat Engine. GE Aviation. Available online: https://www.geaerospace.com/press-release/military-engines/ge-successfully-tests-worlds-first-rotatingceramic-matrix-composite (accessed on 31 December 2022).
Cavdar, U., Altintaş, A., & Karaca, B. (2018). In-situ compaction and sintering of Al2O3-B4C composites by using a High-Frequency Induction System. Metallic Materials, 56, 177–181.
Lin, X., & Darrell Ownby, P. (2000). Pressureless sintering of B4C whisker reinforced Al2O3 matrix composites. Journal of materials science, 35(2), 411–418.
Doorbar, P. J., & Kyle-Henney, S. (2018). 4.19 development of continuously-reinforced metal matrix composites for aerospace applications. Compr. Compos. Mater, 4, 439–463.
Pleskach, V. M., & Olshaneckij, V. Yu. (2019). Zharomicni kompoziti na metalevij, intermetalidnij i keramichnij osnovi. Novi materiali i tehnologiyi v metalurgiyi ta mashinobuduvanni, (1), 87–89.
Vinichenko V. S., Kononenko Yu. Y., Olshanetskyi V. E., Orlov M. R. (2004). Yssledovanye vlyianyia tekhnolohyy proyzvodstva shtabykov na sklonnost provoloky yz toryrovannыkh volframorenyevыkh splavov k rassloenyiu, Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni, (1), 84–88.
Korobko, A. V., & Lavrenko, A. S. (2012). O formirovanii listovyh vysokotemperaturnyh metallokompozitov s matricami na osnove niobiya, uprochnennyh tugoplavkimi volframovymi voloknami. Novi materiali i tehnologiyi v metalurgiyi ta mashinobuduvanni, (1), 52–54.
Sudakov, A. I., & Gerashenko, V. V. (2016). Perspektivy primeneniya kompozicionnyh materialov v raketostroeniii. Aktualnye problemy aviacii i kosmonavtiki, 1(12), 173–174.
Konoval, V. P. (2015). Stojkost k vysokotemperaturnomu okisleniyu kompozicionnyh materialov i pokrytij na osnove diborida titana–hroma. Dopovidi Nacionalnoyi akademiyi nauk Ukrayini, (5), 83–89.
Coenen, J. W., Huber, P., Lau, A., Raumann, L., Schwalenberg, D., Mao, Y., ... & Neu, R. (2021). Tungsten fiber reinforced tungsten (Wf/W) using yarn based textile preforms. Physica Scripta, 96(12), 124063.
Riesch, J., Aumann, M., Coenen, J. W., Gietl, H., Holzner, G., Höschen, T., ... & Neu, R. (2016). Chemically deposited tungsten fibre-reinforced tungsten–The way to a mock-up for divertor applications. Nuclear Materials and Energy, 9, 75–83.
D. Schwalenberg & Neu, R. (2022). Large-scale tungsten fibre-reinforced tungsten and its mechanical properties. Journal of Nuclear Engineering, 3(4), 306–320.
Coenen, J. W. (2020). Fusion materials development at Forschungszentrum Jülich. Advanced Engineering Materials, 22(6), 1901376.
Coenen, J. W., Lee, V. Y., Mao, Y., Morrison, A., Dorow-Gerspach, D., Tan, X., ... & Linsmeier, C. (2023). Evolution of Tungsten Fiber‐Reinforced Tungsten‐Remarks on Production and Joining. Advanced Engineering Materials, 25(19), 2300569.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
Kurita, H., Miyazaki, T., Kawasaki, A., Lu, Y., & Silvain, J. F. (2015). Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Composites Part A: Applied Science and Manufacturing, 73, 125–131.
Mu, X. N., Cai, H. N., Zhang, H. M., Fan, Q. B., Zhang, Z. H., Wu, Y., ... & Wang, D. D. (2018). Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite. Materials & design, 140, 431–441.
Zhang, Y., Heim, F. M., Bartlett, J. L., Song, N., Isheim, D., & Li, X. (2019). Bioinspired, graphene-enabled Ni composites with high strength and toughness. Science Advances, 5(5), eaav5577.
Xiong, B., Peng, F., Chen, W., Li, C., Zhu, Q., Niu, Z., ... & Cheng, D. (2023). Outstanding strength and toughness in graphene reinforced Nb/Nb5Si3 composites with interfacial nano-phases. Journal of Materials Research and Technology, 25, 6886–6897.
Xiong, B., Liu, K., Xiong, W., Wu, X., & Sun, J. (2020). Strengthening effect induced by interfacial reaction in graphene nanoplatelets reinforced aluminum matrix composites. Journal of Alloys and Compounds, 845, 156282.
Zhou, W., Mikulova, P., Fan, Y., Kikuchi, K., Nomura, N., & Kawasaki, A. (2019). Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Composites Part B: Engineering, 167, 93–99.
Tjong, S. C. (2013). Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering: R: Reports, 74(10), 281-350.
Xiong, B., Cheng, D., Zheng, F., Peng, F., Zhu, Q., Niu, Z., ... & Wang, Z. (2024). Strengthening mechanisms in graphene reinforced Nb/Nb5Si3 composite. Journal of Alloys and Compounds, 970, 172600.
Tang, Y., & Guo, X. (2020). Role of deformation temperature and strain rate on microstructural evolution of hot compressed Nb–Si based ultrahigh temperature alloy. Intermetallics, 119, 106719.
Guo, Y., Li, Z., He, J., Su, H., Jia, L., Zhang, J., ... & Zhang, H. (2020). Surface microstructure modification of hypereutectic Nb-Si based alloys to improve oxidation resistance without damaging fracture toughness. Materials Characterization, 159, 110051.
Liu, W., Ren, X., Li, N., Gao, C., & Xiong, H. (2021). Rapid directionally solidified microstructure characteristic and fracture behaviour of laser melting deposited Nb–Si–Ti alloy. Progress in Natural Science: Materials International, 31(1), 113–120.
Fang, X., Guo, X., & Qiao, Y. (2020). Variation in morphology and crystallographic orientation of directionally solidified Nb-Si based alloys at high withdrawal rates. Journal of Alloys and Compounds, 819, 153023.
Long, W. Y., Xiong, W., & Yao, J. P. (2015). Preparation of CNTs reinforced Nb/Nb5Si3 in-situ composites by spark plasma sintering. Special Casting Nonferrous Alloys, 35, 119-123.
Xiong, B., Wang, C., Liu, K., Wang, Z., Xie, Z., Zhang, T., & Li, X. (2021). Interfacial phase induced load transfer in short carbon fiber reinforced Nb/Nb5Si3 composites. Materials Science and Engineering: A, 799, 140156.
Xiong, B., Peng, F., Wang, C., Liu, K., & Wang, Z. (2021). Strengthening mechanisms in short carbon fiber reinforced Nb/Nb5Si3 composites with interfacial reaction. Materials Science and Engineering: A, 825, 141884.
Wang, Q., Wang, Q., Chen, R., Wang, X., Su, Y., & Fu, H. (2023). Synergistic effects of Fe and C on microstructure and properties of Nb-Ti-Si based alloys. Journal of Alloys and Compounds, 936, 168167.
Zhou, Z., Wang, Q., Chen, R., Chen, D., & Fu, H. (2023). Ultra-fine Nbss/Nb5Si3 in situ composites with remarkable properties prepared by ultrasonic melt treatment. Journal of Alloys and Compounds, 940, 168940.
Sun, G., Jia, L., Ye, C., Jin, Z., Wang, Y., Li, H., & Zhang, H. (2021). Balancing the fracture toughness and tensile strength by multiple additions of Zr and Y in Nb-Si based alloys. Intermetallics, 133, 107172.
Sala, K., & Mitra, R. (2021). Effect of Ti addition and microstructural evolution on toughening and strengthening behavior of as cast or annealed Nb-Si-Mo based hypoeutectic and hypereutectic alloys. Metallurgical and Materials Transactions A, 52, 3436–3459.
Wang, Q., Wang, Q., Chen, R., Wang, X., Su, Y., & Fu, H. (2023). Improving the mechanical properties of Nb-24Ti-16Si-2Al alloy by adding Zr and Fe to regulate silicide. Materials Characterization, 196, 112566.
Ye, C., Li, H., Jia, L., Jin, Z., Sun, G., & Zhang, H. (2021). Improvement of fracture toughness of Nb-Si alloy by two-step heat treatment. International Journal of Refractory Metals and Hard Materials, 94, 105378.
Zhou, Z., Wang, Q., Chen, R., Zhao, T., Chen, D., & Su, Y. (2022). Microstructure evolution and mechanical properties of as-cast and ultrasonic treated Nb-16Si-xCr alloys. Journal of Materials Research and Technology, 17, 2856–2863.
Chen, D., Wang, Q., Chen, R., Zhou, Z., Su, Y., & Fu, H. (2022). Effect of Ni on microstructures and mechanical properties for Multielemental Nb-Si-based alloys. Metallurgical and Materials Transactions A, 53(5), 1793–1805.
Chen, D., Wang, Q., Chen, R., Zhou, Z., Su, Y., Guo, J., & Fu, H. (2022). Microstructure evolution and mechanical properties of ZrC-added Nb–16Si–20Ti alloys. Materials Science and Engineering: A, 829, 142159.
Yin, X., Liang, J., Jia, X., Chen, S., Shang, S., Sui, Y., & Liu, C. (2022). Strengthening and toughening effect of laser melting deposited Nb-16Si-20Ti-3Al with nano-ZrC additions. Materials Science and Engineering: A, 850, 143509.
Grammenos, I., & Tsakiropoulos, P. (2010). Study of the role of Al, Cr and Ti additions in the microstructure of Nb-18Si-5Hf base alloys. Intermetallics, 18(2), 242–253.
Grammenos, I., & Tsakiropoulos, P. (2010). Study of the role of Mo and Ta additions in the microstructure of Nb-18Si-5Hf silicide based alloy. Intermetallics, 18(8), 1524–1530.
Jia, L., Weng, J., Sha, J., Zhou, C., & Zhang, H. (2015). A review of ultra high temperature Nb-Si based superalloys. Mater. China, 34, 372–382.
Xiong, B., Wang, Z., Peng, F., Tu, Z., Yan, Y., Zheng, F., ... & Wang, Z. (2024). Evading strength and toughness trade-off in graphene reinforced Nb/Nb5Si3 composites. Intermetallics, 174, 108440.
Xiong, B., Wang, C., Xiong, Y., Xie, D., & Zhang, X. (2019). Effects of sintering temperature on interface and mechanical properties of short carbon fiber reinforced Nb/Nb5Si3 composites fabricated by spark plasma sintering. Intermetallics, 108, 66–71.
Xiong, B., Peng, F., Chen, W., Li, C., Zhu, Q., Niu, Z., ... & Cheng, D. (2023). Outstanding strength and toughness in graphene reinforced Nb/Nb5Si3 composites with interfacial nano-phases. Journal of Materials Research and Technology, 25, 6886–6897.
Xiong, B., Wang, Z., Peng, F., Tu, Z., Yan, Y., Zheng, F., & Wang, Z. (2024). Evading strength and toughness trade-off in graphene reinforced Nb/Nb5Si3 composites. Intermetallics, 174, 108440.
Nieto, A., Agarwal, A., Lahiri, D., Bisht, A., & Bakshi, S. R. (2021). Carbon nanotubes: reinforced metal matrix composites. CRC press.
Bachmaier, A., & Pippan*, R. (2013). Generation of metallic nanocomposites by severe plastic deformation. International materials reviews, 58(1), 41–62.
Jenei, P., Gubicza, J., Yoon, E. Y., Kim, H. S., & Lábár, J. L. (2013). High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by high pressure torsion. Composites Part A: Applied Science and Manufacturing, 51, 71–79.
Silvestre, N. (2013). State-of-the-art review on carbon nanotube reinforced metal matrix composites. International Journal of Composite Materials, 3(6A), 28–44.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Положення про авторські права Creative Commons
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи.